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Homogeneous difference schemes for numerical solution of the prob-
lem of diffusion with a moving interface are constructed on the basis
of an integro-interpolation method. The stability and convergence of
the schemes are shown. The results of numerical calculation are com-~
pared with the analytic solution of the model problem.

The study of diffusion of an impurity in a two-phase
medium with a moving interface is closely related to
the problem of chemical inhomogeneity in the crystal-
lization of various melts.

Diffusive impurity redistribution is decisive in zone
refining of steel and production of semiconductor de-
vices, and appears frequently in fusion welding, crys-
tallization of ingots, and in other metallurgical pro-
cesses involving crystallization of metals and alloys.
Considerable experimental difficulties complicate the
quantitative study of unsteady-state diffusion near a
crystallization front. Calculation methods that account
for the effect of crystallization conditions on the for-
mation mechanism of chemical inhomogeneity are
therefore of interest.

There have been a number of works on diffusive
impurity redistribution in which an analytic solutionis
found under certain assumptions (the problem of "dif-
fusive supercooling™ in [1], the problem of crystalli-
zation of a binary alloy in [2], the problem of chemical
inhomogeneity in [3], and others).

In this paper we propose a number of schemes for
numerical integration of the one-dimensional problem
of chemical inhomogeneity, The formulation of the
problem essentially employs the hypothesis of aplane
crystallization front.

1. Statement of problem. Mathematically, the pro-
cess of diffusive impurity redistribution is formulated
as a boundary-value problem for parabolic equations
with moving discontinuities of the coefficients and spe~
cial conditions of conjugation at the discontinuity points.
The main equations and boundary and initial conditions
have the following form:
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Here, C; and Cjy are the concentrations of the impurity
in the base material; Dy = Dy(x, t) and Dy = Dy(x, t) are
the diffusion coefficients in phases 1 and 2, respec-
tively; £(t) is the position of the interface; and % is the
distribution coefficient (refinement factor). The func-
tion £ = £(t) is assumed to be known, and at the initial
time 0 < £(0) < 1.
In problem (1)—(5) we make the substitution

V(x, z)={

Then, problem (1)—(5) is transformed as follows:
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Conjugation condition (8), which relates the flows to
the continuous function V{x,t) at the moving interface,
can be interpreted as a point (i. e., 5-shaped) power
source d&/dt(1 — nM)V(E(L), t)S(E (L) — x) (5(z) is the
Dirac delta function).

The presence of such a source can be taken into
account on the right-hand side of the equation, which
is understood in the generalized sense:
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where p(x,t) and D(x, t) are piecewise-continuous func-
tions, defined as follows:
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The following equality is valid:
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which follows from the relation 8 [Vn]/0t= (8V/8tm +
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The boundary and initial conditions for V(x,t) are
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In view of the differentiation of the discontinuous
functions p and D, problem (13) and (14) is a problem
of finding a generalized solution V(x,t).

2. Numerical method. We use the integro-inter-
polation method of [4] to construct schemes for nu-
merical integration of problem (13) and (14). We
partition the interval [0, I] with a network with spacing
h, introduce a time step 7 such that xj = ih, tg =k7 (i=
=1,2,...,N;k =1,2,...,K), and integrate (13) over
the elementary region Dpr{xi — h/2 < x < xj + h/2;
tie =t = tyy4] of the space-time plane (x,t):
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We integrate from the left with respect to t and
from the right with respect to x:
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(the notation (pV)(k"'i) indicates the substitution p(x,
VK, g )

The integral is calculated from the left by means of
the generalized rectangle formula at the midpoint,

L2

\ (o V)®*D dy =

v/

.
-t

Fa
= Vg § o8, traddr (VD = V (5, £,

h
X ——

L2

Several approaches can be used in calculating the
integral from the left in (15). We use the method de-
scribed in [4].

Let g = D(8V/éx). Then (8V/8) = g/D and
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Now we calculate the integral withrespect totusing
the rectangle formula at the extreme point t =t}
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and substitute into (15) the obtained expressions for
the integrals in terms of the finite sums:
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System of difference equations (19), whose coeffi-
cients are found from formulas (16)—(18), defines a
calculation scheme (scheme I) for the network function
vi(kﬂ) (i=1,2,...,N~-1;k=1,2,...,K).

Some modifications of this scheme are possible.

We integrate the expression for the flow g =
= D(8V/8x) with respect to x from xj to Xj+;
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We approximate the integrals in (20) as follows:
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We replace in (15) the flows at points x4 + h/2 and
xy — h/2 by their approximate values from (21) and
(22) and integrate with respect to t just as for scheme
and

I. Then the formulas for the coefficients dfk:jx)_
P2
dfiﬂ; in difference equation (19) will have the fol-

lowing form:
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The difference scheme for Eq. (19) in which the co~-
efficients are calculated by (18) and (23) we call dif-
ference scheme II. Note that in a number of cases
scheme II coincides with the scheme obtained by pre-
liminary smoothing of the discontinuous coefficients
in (13) and subsequent replacement of the derivatives
in the equation with smooth coefficients by their dif-
ference ratios.
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Fig. 1. Fragments of space-time network.

9287



does not contain the line £(t), then the approximation
error of schemes I and II is O(T + hz). In the vicinity
of points x = £(t), the order of approximation of the
differential equation deteriorates and is a function of
the way in which the boundary §(t) intersects the lines
of the space-time network.

Let us consider a few simple cases of such inter-
sections and derive formulas for the coefficients in
difference equation (19) for schemes I and I,

Let the time step T be such that the boundary £(t)
moves in time T exactly one step of the space network,
being at all times exactly in the middle between the
nodes of the network. A fragment of a space-timenet-
work corresponding to this case is shown in Fig. la
(d£ /dt > 0).

We assume that the function £(t) can be approxi-
mated with sufficient accuracy by a polygonal function
that coincides with £(t) at points t = t (k= 1, 2,...,K)
and is linear between them. Let us consider the case
of piecewise-constant coefficients:

[ D, = const, 0<<x<T&(Y),

D
1 D, =const, E(f) <<x <L

Then the coefficients of the difference equation are
easily calculated and have the form:
for scheme I

ottt =1 (b= 1 .
1 i %
+) _ Dy DDy | Di+ Dy,
3T 9 "p,—D oD,
C0 =D DiDe gy D gy
® 9 '"D,—D, D,+-D
for scheme II
p(le+l) =1, p(k) — _1_;
4 L K
G Dty ) TDi+ Dy g5
*3 8 2 8

If the line £ = £(t) intersects the network as shown
in Fig. 1b, the coefficients of the difference equation
have the form:

for scheme I
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3. Stability of numerical integration schemes. Let
zlfkﬂ) = Vi(k“) - vl.(k“) be the error of the method of

numerical solution (V&™) = vix;, i1 ). We substitute
v+ o _y&+1) + 50k+1) into (19) and obtainfor zi(k+1)
a difference boundary~value problem:
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is the order of approximation of the differential equa~
tion by the difference equation.
Let us rewrite (28) as

Uh4-1) (k1 k1) o1 Ft 1)
ai+>z§;1r)_,1,l(e )2 4 gl D 24D = flktD)
=12 ., N1, (29)
where
(k1) (k+1)
d[+_15 [.__‘_ T
Qi) = ot =2,
i 2 (k1 ) 2 (k1) 7
B2 pet B2 pteth)

B — Ukt ot 1 g

k1) o k1
f(i-r)_._q;g—l-)'c.__

For second-order difference equations such as (29)
with boundary conditions z +1) o PSRV 0, we have
the maximum principle [5]
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if the coefficients of the difference equation satisfy the
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Theorem. Difference scheme (19) is uniformly
stable for initial data.
From (31), by recurrent substitution for “z(kﬂ) II,
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We represent p.as p, =1+ R7, where R is an
arbitrary constant that is consistent with the inequality
p; > 0. Then from
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follows the uniform stability of difference scheme (19)
for initial data.

In the particular case of R = 0, estimate (32} is
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valid, since = T, The convergence of the
solution of the difference problem on the solution of
the differential problem at a rate equal to the order of
approximation also follows from (32).

4. Numerical experiments. In order to check these
schemes, the numerical solution was compared with
the analytic solution obtained in [3] for an infinite rod,
a constant velocity of the phase boundary, and equal
diffusion coefficients. The model problem was calcu-
lated with the following parameters:

Ci¥ =C = C, = 0,04; » = 0,05, D, = 10°%,
Dy =105 h=10% ©=10% 45 _ 102,

dt

and the length of the interval [0, ] was such that the

boundary conditions had practically no effect in the

numerical solution,

Figure 2 shows the results of calculation of the
model problem by the method proposed in Section 2
(using formula (26)) and of the analytic solution [3].
The table gives the exact and calculated values for
time t = 0.04 sec.

The examples show that the difference schemes can
be used for diffusion problems with a moving phase
boundary. In developing the schemes described here,
we also tried six-point schemes and schemes based on
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Fig. 2. Distribution of impurity concentration

(solid line, exact solution; points, numerical
calculation; C in %; x in g).

Exact and Calculated Values for Time t = 0.04 sec

Calculated solutions
. Exact [
xu values by (24) by (26) by (25)
2 0.029121 0.029478 0.029241 0.029385
4 0,025510 0.025907 0.025637 0.025798
6 0.021453 0.021857 0.021567 0,021736
8 0.017151 0.017526 0.017337 0.017399
10 0.012860 0.013176 0.012910 0.013050
12 0.008851 0.009093 0.008874 0.008977
14 0.005374 0.005541 0.005334 0.005441
16 0.087006 0.087920 0.086517 0.088167
18 0.071886 0.072637 0.071621 0.072827
20 0.061007 0.061616 0.060902 0.061760
22 0.053407 0.053900 0.053413 0.054004

various kinds of smoothing of discontinuous coefficients.
In the numerical experiments, the six-point scheme
had some instability (sawtooth solution). The schemes
with smoothing gave satisfactory solutions for small
smoothing intervals-—one or two steps of the network,

The proposed procedure can be extended to the
multidimensional case (the authors have solved the
two-dimensional problem), and also to more general
equations and systems of equations for solving the prob~-
lem of thermal diffusion.

We thank Yu. A. Sterenbogen and V. I, Makhnenko
for formulating the problem and for numerous discus-
sions of the methods and results.

REFERENCES

1. G. P. Ivantsov, DAN SSSR, 81, no. 2, 1951.

2. L. 1. Rubinshtein, The Stefan Problem [in Rus-
sian], Izd. Zvaigzne, Riga, 1967,

3. V. I. Makhnenko, Avtomaticheskaya svarka, no.
12, 1966.

4. A. N. Tikhonov and A. A. Samarskii, Equations
of Mathematical Physics [in Russian], Izd. Nauka,
1966.

5. 8. K. Godunov and V. S. Ryaben'kii, Introduc-
tion to the Theory of Difference Schemes [in Russian],
Fizmatgiz, Moscow, 1962,
3 January 1968 Paton Institute of Electric
Welding, Kiev



